Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(5): 2480-2494, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38436531

RESUMO

BACKGROUND: Multiple and simultaneous attacks by pathogens and insect pests frequently occur in nature. Plants respond to biotic stresses by activating distinct defense mechanisms, but little is known about how plants cope with multiple stresses. The focus of this study was the combined interaction of fungal infection caused by Leptosphaeria maculans (synonym Plenodomus lingam) and arthropod infestation by the diamondback moth (Plutella xylostella) in oilseed rape (Brassica napus). We hypothesized that infection by the fungal pathogen L. maculans could alter oilseed rape palatability to P. xylostella-chewing caterpillars. Feeding preference tests were complemented with analyses of defense gene transcription, and levels of glucosinolates (GLSs) and volatile organic compounds (VOCs) in L. maculans-inoculated and non-inoculated (control) leaves to determine possible causes of larval choice. RESULTS: Caterpillars preferred true leaves to cotyledons, hence true leaves were used for further experiments. True leaves inoculated with L. maculans were more palatable to caterpillars over control leaves during the early stage of infection at 3 days post inoculation (dpi), but this preference disappeared in the later stages of infection at 7 dpi. In parallel, genes involved in the salicylic acid and ethylene pathways were up-regulated in L. maculans-inoculated leaves at 3 and 7 dpi; L. maculans increased the level of total aliphatic GLSs, specifically glucobrassicanapin, and decreased the level of glucoiberin at 3 dpi and altered the content of specific VOCs. A group of 55 VOCs with the highest variability between treatments was identified. CONCLUSION: We suggest that the P. xylostella preference for L. maculans-inoculated leaves in the early stage of disease development could be caused by the underlying mechanisms leading to changes in metabolic composition. Further research should pinpoint the compounds responsible for driving larval preference and evaluate whether the behavior of the adult moths, i.e. the stage that makes the first choice regarding host plant selection in field conditions, correlates with our results on larval host acceptance. © 2024 Society of Chemical Industry.


Assuntos
Ascomicetos , Brassica napus , Leptosphaeria , Mariposas , Micoses , Animais , Ascomicetos/genética , Folhas de Planta/microbiologia , Larva , Doenças das Plantas/microbiologia
2.
J Agric Food Chem ; 72(11): 5609-5624, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38467054

RESUMO

This study investigates the impact of plasma-seed interaction on germination and early plant development, focusing on Arabidopsis thaliana and Brassica napus. The investigation delves into changes in chemical composition, water absorption, and surface morphology induced by plasma filaments generated in synthetic air. These analyses were conducted using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Although plasma treatment enhanced water absorption and modified surface chemistry, its impact on germination demonstrated species- and context-dependent variations. Notably, the accelerated germination and morphogenesis of seedlings in microbiome-enriched (MB+) soil could be achieved also in microbiome-deprived (MB-) soil by short-term plasma treatment of seeds. Remarkably, the positive effects of plasma treatment on early developmental events (germination, morphogenesis) and later events (formation of inflorescences) were more pronounced in the context of MB- soil but were accompanied by a slight decrease in disease resistance, which was not detected in MB+ soil. The results underscore the intricate dynamics of plasma-plant interactions and stress the significance of accounting for the soil microbiome while designing experiments with potential field application.


Assuntos
Arabidopsis , Germinação , Solo , Sementes , Plântula , Água/farmacologia
3.
AoB Plants ; 15(2): plad004, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36970187

RESUMO

The technological exploitation of palladium or palladium nanoparticles (PdNPs) is increasing, and their wider usage relates to an unwanted release of pollutants into the environment, raising public health concerns about the infiltration of palladium into the consumption chain. This study focuses on the effect of spherical gold-cored PdNPs of 50 ± 10 nm diameter stabilized by sodium citrate on the interaction between an oilseed rape (Brassica napus) and the fungal pathogen Plenodomus lingam. Pretreatment of B. napus cotyledons with PdNPs suspension 24 h before but not 24 h after inoculation with P. lingam resulted in a decrease in the extent of disease symptoms; however, this effect was caused by Pd2+ ions (35 mg l-1 or 70 mg l-1). Tests to determine any direct antifungal activity on P. lingam in vitro demonstrated that the residual Pd2+ ions present in the PdNP suspension were responsible for the antifungal activity and that PdNPs themselves do not contribute to this effect. Brassica napus plants did not show any symptoms of palladium toxicity in any form. PdNPs/Pd2+ slightly increased the chlorophyll content and the transcription of pathogenesis-related gene 1 (PR1), indicating the activation of the plant defence system. We conclude that the only toxic effect of the PdNP suspension was on P. lingam via ions and that PdNPs/Pd2+ did not have any deleterious effect on the B. napus plants.

4.
Front Plant Sci ; 13: 893858, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668790

RESUMO

Natural compounds isolated from macroalgae are promising, ecofriendly, and multifunctional bioinoculants, which have been tested and used in agriculture. Ulvans, for instance, one of the major polysaccharides present in Ulva spp. cell walls, have been tested for their plant growth-promoting properties as well as their ability to activate plant immune defense, on a large variety of crops. Recently, we have characterized for the first time an arabinogalactan protein-like (AGP-like) from Ulva lactuca, which exhibits several features associated to land plant AGPs. In land plant, AGPs were shown to play a role in several plant biological functions, including cell morphogenesis, reproduction, and plant-microbe interactions. Thus, isolated AGP-like proteins may be good candidates for either the plant growth-promoting properties or the activation of plant immune defense. Here, we have isolated an AGP-like enriched fraction from Ulva lactuca and we have evaluated its ability to (i) protect oilseed rape (Brassica napus) cotyledons against Leptosphaeria maculans, and (ii) its ability to activate immune responses. Preventive application of the Ulva AGP-like enriched fraction on oilseed rape, followed by cotyledon inoculation with the fungal hemibiotroph L. maculans, resulted in a major reduction of infection propagation. The noticed reduction correlated with an accumulation of H2O2 in treated cotyledons and with the activation of SA and ET signaling pathways in oilseed rape cotyledons. In parallel, an ulvan was also isolated from Ulva lactuca. Preventive application of ulvan also enhanced plant resistance against L. maculans. Surprisingly, reduction of infection severity was only observed at high concentration of ulvan. Here, no such significant changes in gene expression and H2O2 production were observed. Together, this study indicates that U. lactuca AGP-like glycoproteins exhibit promising elicitor activity and that plant eliciting properties of Ulva extract, might result not only from an ulvan-originated eliciting activities, but also AGP-like originated.

5.
Front Microbiol ; 13: 853593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547140

RESUMO

Pseudomonas syringae is a bacterial pathogen that causes yield losses in various economically important plant species. At the same time, P. syringae pv. tomato (Pst) is one of the best-studied bacterial phytopathogens and a popular model organism. In this study, we report on the isolation of two phages from the market-bought pepper fruit showing symptoms of bacterial speck. These Pseudomonas phages were named Eir4 and Eisa9 and characterized using traditional microbiological methods and whole-genome sequencing followed by various bioinformatics approaches. Both of the isolated phages were capable only of the lytic life cycle and were efficient against several pathovars from Pseudomonas and Xanthomonas genera. With the combination of transmission electron microscopy (TEM) virion morphology inspection and comparative genomics analyses, both of the phages were classified as members of the Autographiviridae family with different degrees of novelty within the known phage diversity. Eir4, but not Eisa9, phage application significantly decreased the propagation of Pst in the leaf tissues of Arabidopsis thaliana plants. The biological properties of Eir4 phage allow us to propose it as a potential biocontrol agent for use in the prevention of Pst-associated bacterioses and also as a model organism for the future research of mechanisms of phage-host interactions in different plant systems.

6.
Biotechnol Prog ; 32(4): 918-28, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27009514

RESUMO

The Dothideomycete Leptosphaeria maculans, a worldwide fungal pathogen of oilseed rape (Brassica napus), secretes a broad spectrum of molecules into the cultivation medium during growth in vitro. Here, candidate elicitor molecules, which induce resistance in B. napus to L. maculans, were identified in the cultivation medium. The elicitation activity was indicated by increased transcription of pathogenesis-related gene 1 (PR1) and enhanced resistance of B. napus plants to the invasion of L. maculans. The elicitation activity was significantly lowered when the cultivation medium was heated to 80°C. Active components were further characterized by specific cleavage with the proteolytic enzymes trypsin and proteinase K and with glycosidases α-amylase and ß-glucanase. The elicitor activity was eliminated by proteolytic digestion while glycosidases had no effect. The filtered medium was fractionated by either ion-exchange chromatography or isoelectric focusing. Mass spectrometry analysis of the most active fractions obtained by both separation procedures revealed predominantly enzymes that can be involved in the degradation of plant cell wall polysaccharides. This is the first study searching for L. maculans-specific secreted elicitors with a potential to be used as defense-activating agents in the protection of B. napus against L. maculans in agriculture. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:918-928, 2016.


Assuntos
Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Brassica napus/química , Meios de Cultura/química , Proteínas Fúngicas/metabolismo , Antifúngicos/análise , Antifúngicos/metabolismo , Ascomicetos/metabolismo , Brassica napus/metabolismo , Brassica napus/microbiologia , Cromatografia por Troca Iônica , Proteínas Fúngicas/análise , Espectrometria de Massas
7.
Plant Methods ; 11: 31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27408615

RESUMO

BACKGROUND: The use of light emitting diodes (LEDs) brings several key advantages over existing illumination technologies for indoor plant cultivation. Among these are that LEDs have predicted lifetimes from 50-100.000 hours without significant drops in efficiency and energy consumption is much lower compared to traditional fluorescent tubes. Recent advances allow LEDs to be used with customized wavelengths for plant growth. However, most of these LED growth systems use mixtures of chips emitting in several narrow wavelengths and frequently they are not compatible with existing infrastructures. This study tested the growth of five different plant species under phosphor coated LED-chips fitted into a tube with a standard G13 base that provide continuous visible light illumination with enhanced blue and red light. RESULTS: The LED system was characterized and compared with standard fluorescence tubes in the same cultivation room. Significant differences in heat generation between LEDs and fluorescent tubes were clearly demonstrated. Also, LED lights allowed for better control and stability of preset conditions. Physiological properties such as growth characteristics, biomass, and chlorophyll content were measured and the responses to pathogen assessed for five plant species (both the model plants Arabidopsis thaliana, Nicotiana bentamiana and crop species potato, oilseed rape and soybean) under the different illumination sources. CONCLUSIONS: We showed that polychromatic LEDs provide light of sufficient quality and intensity for plant growth using less than 40% of the electricity required by the standard fluorescent lighting under test. The tested type of LED installation provides a simple upgrade pathway for existing infrastructure for indoor plant growth. Interestingly, individual plant species responded differently to the LED lights so it would be reasonable to test their utility to any particular application.

8.
Biochem Biophys Res Commun ; 444(4): 520-4, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24472551

RESUMO

Antimicrobial decapeptide anoplin was tested for its antifungal activity against plant pathogen Leptosphaeria maculans and protection of Brassica napus plants from disease. To reveal the mode of action of the peptide, a natural form of anoplin amidated on C-terminus (ANP-NH2), and its carboxylated analog (ANP-OH) were used in the study. We demonstrated strong antifungal activity of anoplin in vitro regardless C-terminus modification. In addition we show that both ANP-NH2 and ANP-OH induce expression of defence genes in B. napus and protects plants from L. maculans infection. The results indicate that the amidation of anoplin is not essential for its antifungal and plant defence stimulating activities.


Assuntos
Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Ascomicetos/efeitos dos fármacos , Brassica napus/microbiologia , Doenças das Plantas/prevenção & controle , Venenos de Vespas/farmacologia , Amidas/química , Amidas/farmacologia , Antifúngicos/química , Peptídeos Catiônicos Antimicrobianos/química , Brassica napus/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Doenças das Plantas/microbiologia , Venenos de Vespas/química
9.
J Agric Food Chem ; 61(22): 5207-14, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23638999

RESUMO

Preparations with elicitation activity were obtained from the mycelium of Leptosphaeria maculans , a fungal pathogen of oilseed rape (Brassica napus). Crude delipidated and deproteinized extract from fungal cell walls induced expression of pathogenesis related gene 1 (PR1), hydrogen peroxide accumulation, and enhanced resistance of B. napus plants toward infection by L. maculans. Elicitation activity significantly decreased after treatment of a crude extract with α- or ß-glucanase. Monosaccharide composition analysis of a crude extract purified by ion-exchange chromatography revealed glucose (∼58 mol %), mannose (∼22 mol %), and galactose (∼18 mol %) as the major sugars. FT-IR and NMR spectra confirmed the presence of both carbohydrate and polypeptide components in the purified product. Correlation NMR experiments defined trisaccharide bound to O-3 of serine residue α-D-Glcp-(1→2)-ß-D-Galf-(1→6)-α-D-Manp-(1→3)-L-Ser. Terminal α-D-Glcp and (1→6)-ß-D-glucan were also detected. The obtained results strongly support the conclusion that these carbohydrates induce defense response in B. napus plants.


Assuntos
Ascomicetos/química , Brassica napus/efeitos dos fármacos , Extratos Celulares/farmacologia , Parede Celular/química , Resistência à Doença/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Regulação para Cima/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/imunologia , Aspergillus niger/enzimologia , Brassica napus/imunologia , Brassica napus/metabolismo , Brassica napus/microbiologia , Extratos Celulares/química , Extratos Celulares/isolamento & purificação , Química Agrícola/métodos , Regulação para Baixo , Proteínas Fúngicas/análise , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fungicidas Industriais/química , Fungicidas Industriais/isolamento & purificação , Glicosídeo Hidrolases/biossíntese , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosídeos/análise , Glicosídeos/química , Glicosídeos/metabolismo , Peróxido de Hidrogênio/metabolismo , Hidrólise , Micélio/química , Micélio/crescimento & desenvolvimento , Micélio/imunologia , Oligossacarídeos/análise , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/imunologia , Plântula/metabolismo , Plântula/microbiologia
10.
Mol Plant Microbe Interact ; 25(9): 1238-50, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22624662

RESUMO

Interaction of a plant with a fungal pathogen is an encounter with hundreds of molecules. In contrast to this, a single molecule often decides between the disease and resistance. In the present article, we describe the defense responses triggered by AvrLm1, an avirulence gene from a hemibiotrophic ascomycete, Leptosphaeria maculans, responsible for an incompatible interaction with Brassica napus. Using multiple hormone quantification and expression analysis of defense-related genes, we investigated signaling events in Rlm1 plants infected with two sister isolates of L. maculans differentiated by the presence or absence of AvrLm1. Infection with the isolate carrying AvrLm1 increased the biosynthesis of salicylic acid (SA) and induced expression of the SA-associated genes ICS1, WRKY70, and PR-1, a feature characteristic of responses to biotrophic pathogens and resistance gene-mediated resistance. In addition to SA-signaling elements, we also observed the induction of ASC2a, HEL, and CHI genes associated with ethylene (ET) signaling. Pharmacological experiments confirmed the positive roles of SA and ET in mediating resistance to L. maculans. The unusual cooperation of SA and ET signaling might be a response to the hemibiotrophic nature of L. maculans. Our results also demonstrate the profound difference between the natural host B. napus and the model plant Arabidopsis in their response to L. maculans infection.


Assuntos
Ascomicetos/metabolismo , Brassica napus/microbiologia , Etilenos/metabolismo , Proteínas Fúngicas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais/fisiologia , Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , Proteínas Fúngicas/farmacologia , Regulação Fúngica da Expressão Gênica , Doenças das Plantas , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...